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Abstract
The classical problem of thermally developing Poiseuille flow in the presence of
viscous dissipation (the ‘Graetz–Brinkman problem’) is reviewed in this paper.
Taking into account that the traditional assumptions of a uniform entrance
temperature and of Poiseuille velocity profile are mutually exclusive concepts
when the frictional heat generation is significant, in the present paper a non-
uniform entrance temperature profile is considered. This non-uniform ‘initial
condition’ is not prescribed, but it is deduced from the energy balance equation
in a consistent way as the fully developed temperature profile of the Poiseuille
flow under isothermal boundary conditions. Both for the dependence of the
local Nusselt number on the Brinkman number and the developing temperature
field, substantial differences have been found compared with the traditional
case. The consequences of this sensitive dependence on the initial condition
are discussed in detail.

PACS numbers: 44.05.+e, 44.15.+a, 44.27.+g

Nomenclature

Br Brinkman number, dimensionless, equation (12)
dh hydraulic diameter (m), dh = 2r0

Dn dimensionless coefficients, equation (28)
cp specific heat at constant pressure(J kg−1 K−1), equation (2)
Hn dimensionless coefficients, equation (29)
k thermal conductivity (W m−1 K−1), equation (2)
M confluent hypergeometric function, equation (21)
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Nu Nusselt number, dimensionless, equation (35)
Nn dimensionless normalization constant, equation (24)
p pressure, (N m−2), equation (1b)
Pe Peclét number, Pe = umdh/α, dimensionless,
qw wall heat flux (W m−2), equation (36)
r radial coordinate (m)

r0 duct radius (m)

Rn dimensionless eigenfunctions, equation (19)
S series, equations (41)
T temperature (K)

Tb bulk temperature (K), equation (37)
T∗ temperature scale of viscous dissipation (K), equation (3b)
u velocity (m s−1), equation (1)
um average velocity (m s−1), equation (1)
z axial coordinate (m)

Greek symbols

α thermal diffusivity (m2 s−1), α = k/(ρcp)

δnm Kronecker symbol, equation (24)
λ2

n dimensionless eigenvalues, equation (19)
µ dynamic viscosity (kg m−1 s−1), equation (2)
ρ fluid density, (kg m−3)

η dimensionless radial coordinate, equation (8a)
ζ dimensionless axial coordinate, equation (8b)
� dimensionless temperature, equation (8c)

Subscripts

as asymptotic
e, en entrance condition
n summation index

Superscripts

∼ dimensionless quantity, equations (18), (42), (43)

1. Introduction

The Graetz problem [1] and its numerous extensions are of basic importance for convective
heat transfer. All of them concern the steady thermal development of a hydrodynamically fully
developed forced convection duct flow as a consequence of an abrupt change of the thermal
boundary conditions at some axial station, referred to usually as the ‘thermal entrance station’
of the flow.

The classical Graetz problem of the Poiseuille flow for isothermal-to-isothermal wall
conditions (i.e. for a sudden jump of the wall temperature at the thermal entrance station, from a
constant to another constant value) has been rediscovered and solved independently by Nusselt
[2]. Since these pioneering papers, the thermal entrance problem has produced an enormous
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scientific literature. The bulk of the results has been summarized in the comprehensive
overviews by Shah and London [3] and Kakac and Yener [4].

One of the major extensions of the Graetz problem concerns the effect of the internal heat
generation by viscous dissipation. The importance of this effect for a thermally developing
flow in narrow ducts (capillaries) has first been emphasized by Brinkman [5]. On this reason,
a Graetz problem in the presence of viscous dissipation is called usually a Graetz–Brinkman
problem. First of all, it is worth mentioning here that the effect of viscous dissipation is
significant not only in capillary flows but in all duct flows of high-Prandtl number fluids
(e.g. engine oils, crude oils, etc), for large and even moderate values of the Peclét number.
The mathematical analysis of the Graetz–Brinkman problem is simplified in such cases by
the fact that the heat transport by axial conduction is negligible in comparison with the heat
released by viscous dissipation and transported by the moving fluid [5]. However, in the case
of low-Prandtl number fluids (e.g. liquid metals), for small and even moderate values of the
Peclét number, the opposite is true: compared with the heat generation by internal friction, the
axial conduction becomes the dominant effect. The latter effect on the thermally developing
flow for isothermal-to-isothermal boundary conditions has been investigated with the aid of
the traditional method of the Graetz problems (the separation of variables) by Lahjomri and
Oubarra, [6]. The cases of real technical interest in which both the effects of viscous dissipation
and of axial heat conduction would become simultaneously significant, are quite rare.

Subsequent to Brinkman’s paper [5] concerned with the isothermal-to-isothermal and the
isothermal-to-adiabatic boundary conditions, considerable analytical and numerical research
works have been directed on different extensions and applications of the Graetz–Brinkman
problem (see, e.g., Toor [7], Gill [8], Ou and Cheng [9, 10] and references therein). The
analytical solution of the isothermal-to-isothermal as well as of the isothermal-to-isoflux
Graetz–Brinkman problem has first been given by Ou and Cheng [9, 10] and later also by
Basu and Roy [11]. The case of the Poiseuille flow with isothermal-to-convective boundary
conditions has been considered by Lin et al [12] and the Graetz–Brinkman problem for
the slug flow with isothermal-to-axially variable heat flux boundary conditions has more
recently been solved by Barletta and Zanchini [13]. The novel developments concerning the
Graetz–Brinkman problem of power law fluids have been reviewed by Valkó [14]. Valkó’s
paper [14] also reports a new and efficient solution technique based on the Galerkin method
in combination with the Laplace transformation, which allows for the most general linear
boundary conditions in the range of the thermally developing flow.

A joint feature of the most previous investigations of the Graetz–Brinkman problem
is the assumption of a uniform entrance temperature profile, Ten = constant. The present
work departs from all these studies by relaxing precisely this basic assumption in favour of
a non-uniform entrance condition which is obtained in a natural way as the fully developed
temperature profile of a Poiseuille flow under isothermal boundary conditions when viscous
dissipation is significant. (This fully developed temperature profile can be prepared by starting
the flow ‘infinitely far’ upstream from the thermal entrance station z = 0.) There are two
basic arguments to renounce on the traditional uniform entrance condition, namely:

1. In the presence of viscous dissipation, T = constant is not a solution of the thermal
energy equation associated with the Poiseuille flow. Thus the assumption Ten = constant
violates in fact the first principle of thermodynamics in the upstream section of the duct.

2. The non-uniform entrance temperature profile (Ten �= constant) which solves the
mentioned energy equation along with the isothermal boundary condition, leads to a
dependence of the local Nusselt number (see equation (35)) on the Brinkman number (see
equation (12)) which deviates from that corresponding to Ten = constant (see figures 1(a)
and (b)) substantially.
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(a)

(b)

Figure 1. (a) The local Nusselt number corresponding to the non-uniform entrance temperature
plotted as a function of ζ for different positive values of Br . (b) The local Nusselt number
corresponding to the uniform entrance temperature plotted as a function of ζ for different positive
values of Br .

Accordingly, the main issue of the present paper is a detailed investigation of the effect of the
non-uniform entrance temperature mentioned above on the heat transfer characteristics of the
thermally developing Poiseuille flow when the viscous dissipation is significant.

It is also worth mentioning here that the above aspect (i) has already been recognized
by Gill [8]; however, strangely enough, his early insight has not penetrated the later research
literature.

2. Model and governing equations

We consider the Poiseuille flow in a circular duct of radius r0. The fluid velocity as a function
of the radial coordinate r is given by

u(r) = 2um[1 − (r/r0)
2], (1a)

um = r2
0

8µ

(
−dp

dz

)
, (1b)
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where um denotes the average velocity. The z axis of the coordinate system coincides with the
cylinder axis.

In the upstream range z < 0, the duct wall is held at the constant temperature Te. At
the entrance station z = 0 of the thermally developing flow regime, the wall temperature
changes abruptly from Te to another constant value Tw �= Te which is kept constant in the
whole downstream range z > 0. Both the so-called ‘fluid cooling’ (Tw < Te) and the Tw > Te

‘fluid heating’ (Tw > Te) situations are of physical and engineering interest (see section 4).
We further assume that the axial heat conduction is negligible, while the viscous dissipation
is significant. The physical properties are also considered constant. Under these conditions
the temperature field T (r, z) of our forced convection flow is governed by the thermal energy
equation

ρcpu
∂T

∂z
= k

r

∂

∂r

(
r
∂T

∂r

)
+ µ

(
du

dr

)2

, 0 < r < r0. (2)

The last term on the right-hand side of equation (2) describes the contribution of the heat
released by viscous dissipation to the overall heat balance of the flow.

It is clearly seen that, in the presence of viscous dissipation, the traditional assumption
of a uniform entrance temperature violates the energy equation (2). Hence, the entrance
temperature which is consistent with the first principle of thermodynamics must be a non-
uniform solution of equation (2) satisfying the boundary condition T |r=r0

= Te for z � 0. It
is easy to show that temperature profile, T = Ten(r),

Ten(r) = Te + T∗[1 − (r/r0)
4], (3a)

T∗ = µu2
m

k
, (3b)

of the thermally fully developed Poiseuille flow satisfies this requirement exactly. (As
mentioned above, the fully developed temperature profile can be prepared by starting the flow
‘infinitely far’ upstream from the thermal entrance station z = 0.) This circumstance yields
the main motivation for the present work, which removes the traditional uniform entrance
condition Ten = constant in favour of the non-uniform one given by equation (3).

In the downstream range z > 0, the Poiseuille flow (1) is still maintained, but it becomes
thermally developing under the isothermal boundary conditions

T (r0, z) = Tw �= Te, z > 0. (4)

Having in mind the axial symmetry of equation (2) and of the boundary condition (4), the
centreline condition

∂T

∂r

∣∣∣∣
r=0

= 0, z � 0 (5a)

or

T |r=0 = finite for all z (5b)

must also be satisfied (conditions (5a) and (5b) have the same effect on the solution).
Furthermore, due to the parabolic character of equation (2), at the entrance station z = 0

of the thermally developing flow also an ‘initial condition’ is necessary. This initial or thermal
entrance condition requires that at z = 0 the temperature field T (r, z) coincides with the
temperature field (3) of the fully developed entrance flow,

T (r, 0) = Ten(r) = Te + T∗[1 − (r/r0)
4]. (6)

In this way, equation (2) along with conditions (4), (5a) and (6) specifies a well-posed problem.
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3. Solution

3.1. Asymptotic solution

In the far downstream section of the duct, z → ∞, the flow has lost any memory of the thermal
entrance effects which are dominant only in the range of small values of the axial coordinate z.
Hence, for z → ∞ the solution of equation (2) becomes independent of z. This solution is
in fact the temperature profile of the thermally developed Poiseuille flow in the presence of
viscous dissipation similar to the entrance temperature profile (3a), but in this case subject to
the boundary condition (4), instead of T |r=r0

= Te. Therefore, this asymptotic solution reads

Tas(r) = Tw + T∗[1 − (r/r0)
4], z → ∞ (7)

3.2. Nondimensionalization

It is convenient to introduce the dimensionless variables

η = r

r0
, (8a)

ζ = 1

Pe

z

r0
, (8b)

�(η, ζ ) = T (r, z) − Tw

Te − Tw
, (8c)

where Pe is the Peclét number, Pe = 2r0um/α, α = k/(ρcp).
With the new variables the energy equation (2), the entrance and the asymptotic

temperature profiles (3a) and (7) become

(1 − η2)
∂�

∂ζ
= 1

η

∂

∂η

(
η
∂�

∂η

)
+ 16Brη2, ζ > 0, 0 < η < 1 (9)

�en(η) = 1 + Br(1 − η4), 0 � η � 1, ζ = 0 (10)

�as(η) = Br(1 − η4), 0 � η � 1, ζ → ∞, (11)

where Br denotes the Brinkman number,

Br = T∗
Te − Tw

= µu2
m

k (Te − Tw)
. (12)

To the cases of ‘fluid cooling’ (Tw < Te) and ‘fluid heating’ (Tw > Te), there correspond
positive and negative values of the Brinkman number, respectively.

Furthermore, the boundary, the centreline and the initial conditions (4), (5b) and (6) go
over in

�(1, ζ ) = 0, ζ > 0 (13)

�(0, ζ ) = finite, ζ � 0 (14)

�(η, 0) = �en(η). (15)
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3.3. The full solution

Equation (9) along with conditions (13)–(15) specifies a well-posed initial and boundary value
problem. It is well known that the full solution of this linear problem can be written in the
form of the superposition

�(η, ζ ) = �as(η) + �̃(η, ζ ), (16)

where �̃(η, ζ ) satisfies the homogeneous partial differential equation:

(1 − η2)
∂�̃

∂ζ
= 1

η

∂

∂η

(
η
∂�̃

∂η

)
. (17)

The solution procedure in the present case is basically the same as in all classical Graetz-type
problems and it consists of the following main steps.

One first represents �̃(η, ζ ) as a linear combination of elementary separable solutions,

�̃(η, ζ ) =
∞∑

n=1

CnRn(η) e−λ2
n ζ . (18)

In this way, from equations (17), (18), (13) and (14) the following Sturm–Liouville eigenvalue
problem emerges for the radial functions Rn(η),

d

dη

(
η

dRn

dη

)
+ λ2

nη(1 − η2)Rn = 0 (19)

Rn(1) = 0 (20a)

and

Rn(0) = 1. (20b)

The solution of this problem can be given in terms of Kummer’s confluent hypergeometric
function M (a, b, x) as follows:

Rn(η) = e− 1
2 λnη

2
M

(
2 − λn

4
, 1, λnη

2

)
. (21)

The eigenvalues λ2
n are obtained from the solutions of the transcendental equation:

M

(
2 − λn

4
, 1, λn

)
= 0, (22)

which is an immediate consequence of the boundary condition (20a). On using the properties
of the function M (a, b, x) (see, e.g., [15]) it can be shown that if λn is a solution of
equation (22) then −λn is also a solution. Moreover, Rn (η; λn) = Rn (η;−λn), such that it is
sufficient to consider, for example, the positive roots of equation (22) only.

It is worth emphasizing here that the assumption concerning the entrance temperature
profile �en(η) does not affect the boundary value problems (19) and (20). The specific
form of �en(η) only affects the values of the (yet undetermined) coefficients Cn of the linear
superposition (18) via the initial condition (15). Indeed, equations (15), (16) and (18) yield

∞∑
n=1

CnRn(η) = �en(η) − �as(η). (23)

Thus, having in mind that the Sturm–Liouville eigenfunctions associated with different
eigenvalues λ2

n are orthogonal,∫ 1

0
Rn(η)Rm(η)η(1 − η2) dη = Nnδnm, (24)
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where the normalization factors Nn can be calculated explicitly, one immediately obtains for
the coefficients Cn the expressions

Cn = 1

Nn

∫ 1

0
[�en(η) − �as(η)] Rn(η)η(1 − η2) dη. (25)

This expression makes the difference between the usual choice of the uniform entrance
temperature profile Ten(r) = Te, i.e. �en(η) = 1, and the present fully developed profile
given by equation (10) manifest. Indeed, equations (10) and (11) imply

�en(η) − �as(η) =
{

1 − Br(1 − η4), uniform Ten

1, non-uniform Ten.
(26)

Therefore, in these two cases the respective coefficients Cn can differ from each other (for non-
negligible values of the Brinkman number Br) substantially. In order to make this distinction
transparent also in the forthcoming equations, it is convenient to transcribe equation (25), with
account on equation (26), into the form

Cn =
{
Dn − BrHn, uniform Ten

Dn, non-uniform Ten,
(27)

where

Dn = 1

Nn

∫ 1

0
η(1 − η2)Rn(η) dη (28)

and

Hn = 1

Nn

∫ 1

0
η(1 − η2)(1 − η4)Rn(η) dη. (29)

The coefficients Dn are identical to those of the classical Graetz problem. All the coefficients
Dn and Hn are independent of the Brinkman number Br . The contribution of Hn to the
coefficient Cn arises only when a uniform entrance temperature is assumed but it disappears in
the case of the fully developed entrance temperature. The reason is that, in the latter case, the
r-dependent terms of expressions (3a) and (7) compensate each other exactly. In other words,
in the case of the uniform entrance temperature Ten(r) = Te the coefficients Cn depend on the
Brinkman number Br linearly according to equation (27), while in the case of the non-uniform
entrance temperature profile (3a) they are independent of Br and coincide with the Graetz
coefficients Dn. Obviously, this circumstance has also further consequences, namely on the
local Nusselt number Nu(z) (see below) as well as for dimensionless temperature profile:

�(η, ζ ) = Br(1 − η4) +
∞∑

n=1

CnRn(η) e−λ2
n ζ , (30)

which has been obtained from equations (16), (11) and (18), where the coefficients Cn are
given by equation (27).

On using equations (19) and (20), the integral of equation (28) can be calculated explicitly,
such that one obtains

Dn = −R′
n(1)

λ2
nNn

, (31)

where

R′
n(1) = λn

(
1 − 1

2
λn

)
e− 1

2 λn × M

(
6 − λn

4
, 2, λn

)
. (32)
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The integral (29) can similarly be reduced to the simpler form

Hn = 16

λ2
nNn

∫ 1

0
η3Rn(η) dη. (33)

The coefficients Dn and Hn possess the remarkable property that their respective sums equal
unity

∞∑
n=1

Dn = 1, (34a)

∞∑
n=1

Hn = 1. (34b)

These relationships can easily be obtained by substituting η = 0 in equation (23) and taking
into account equations (20b), (26) and (27).

3.4. The local Nusselt number

The quantity of the main engineering interest is the local Nusselt number which is defined
usually with respect to the bulk temperature Tb(z) and the hydraulic diameter dh (in this case
dh = 2r0) as follows:

Nu(z) = qw(z)dh

k [Tw − Tb(z)]
. (35)

Here qw(z) denotes the radial wall heat flux,

qw(z) = k
∂T (r, z)

∂r

∣∣∣∣
r=r0

(36)

and the bulk temperature of the fluid is defined by

Tb(z) = 2

umr2
0

∫ r0

0
T (r, z)u(r)r dr. (37)

After standard calculations one obtains

qw(z) = kT∗
r0

[
−4 +

1

Br

∞∑
n=1

CnR
′
n(1) e−λ2

n ζ

]
(38)

and

Tb(z) = Tw + T∗

[
5

6
− 4

Br

∞∑
n=1

Cn

λ2
n

R′
n(1) e−λ2

n ζ

]
(39)

such that

Nu(z) = 48Br − 12
∑∞

n=1 CnR
′
n(1) e−λ2

n ζ

5Br − 24
∑∞

n=1
Cn

λ2
n
R′

n(1) e−λ2
n ζ

, (40)

where the coefficients Cn are given by equation (27).
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4. Discussion

4.1. General considerations

For more transparency, it is convenient to introduce the shortcut notations

S1(ζ ) = −
∞∑

n=1

DnR
′
n(1) e−λ2

n ζ , (41a)

S2(ζ ) = −
∞∑

n=1

HnR
′
n(1) e−λ2

n ζ (41b)

S3(ζ ) = −
∞∑

n=1

Dn

λ2
n

R′
n(1) e−λ2

n ζ , (41c)

S4(ζ ) = −
∞∑

n=1

Hn

λ2
n

R′
n(1) e−λ2

n ζ (41d)

as well as the dimensionless radial heat flux q̃w(ζ ;Br) and temperature difference 	T̃b(ζ ;Br),

q̃w(ζ ;Br) = qw(z)

(kT∗/r0)
, (42a)

	T̃b(ζ ;Br) = Tw − Tb(z)

T∗
. (42b)

With this notation the local Nusselt number (40) is given by

Nu(ζ ;Br) = 2
q̃w(ζ ;Br)

	T̃b(ζ ;Br)
. (43)

The above quantities will be compared for two cases of the Graetz–Brinkman problem, namely:

(i) the case of uniform entrance temperature in the presence of viscous dissipation (as reported
by Basu and Roy [11]),

(ii) the case of the fully developed entrance temperature profile (3a) in the presence of viscous
dissipation (the present paper).

The corresponding expressions of q̃w(ζ ;Br), 	T̃b(ζ ;Br) and Nu(ζ ;Br) are summarized in
table 1. One immediately sees that all these quantities are quite different for the uniform and
non-uniform initial conditions, respectively. The classical Graetz problem (uniform entrance
temperature, viscous dissipation neglected) corresponds to the limiting case T∗ → 0, i.e.
Br → 0. In this case, equations (38)–(40) yield

qw(z) = −k(Te − Tw)

r0
S1(ζ ), (44a)

Tw − Tb(z) = −4(Te − Tw)S3(ζ ), (44b)

Nu(z) = 1

2

S1(ζ )

S3(ζ )
. (45)

Basically, the eigenvalues λ2
n and the coefficients Dn, Hn and R′

n(1) occurring in the above
expressions can be calculated from equations (22) and (31)–(33) to any desired precision.
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Table 1. Thermal characteristics in the cases (i) and (ii) as specified.

(i) (ii)
Uniform Non-uniform
entrance temperature entrance temperature

Dimensionless

radial heat flux: −
(

4 + S1
Br

)
+ S2, − (

4 + 1
Br

S1
)
,

q̃w(ζ ; Br) q̃w(∞; Br) = −4 q̃w(∞; Br) = −4
Dimensionless
temperature difference

Wall-bulk: −
(

5
6 + 4

Br
S3

)
+ 4S4, −

(
5
6 + 4

Br
S3

)
,

	T̃b(ζ ; Br) 	T̃b(∞; Br) = − 5
6 	T̃b(∞; Br) = − 5

6
Local Nusselt number:
Nu(ζ ;Br) =

2 q̃w(ζ ;Br)

	T̃b(ζ ;Br)

(4−S2)Br+S1(
5
12 −2S4

)
Br+2S3

4Br+S1
5

12 Br+2S3

Nu(∞; Br) = 48
5 Nu(∞;Br) = 48

5

Table 2. The first 10 eigenvalues and coefficients calculated to 12 significant digits.

n λn Dn Hn

1 2.704 364 419 88 +1.476 435 406 68 +1.353 410 834 21
2 6.679 031 449 35 −0.806 123 895 55 −0.504 027 201 46
3 10.673 379 5381 +0.588 762 153 61 +0.232 180 064 23
4 14.671 078 4627 −0.475 850 426 24 −0.132 358 829 71
5 18.669 871 8645 +0.405 021 810 71 +0.085 381 851 652
6 22.669 143 3588 −0.355 756 506 41 −0.059 629 327 371
7 26.668 661 9960 +0.319 169 053 10 +0.044 003 938 259
8 30.668 323 3409 −0.290 735 829 17 −0.033 813 713 976
9 34.668 073 8224 +0.267 891 182 61 +0.026 799 931 621

10 38.667 883 3469 −0.249 062 532 82 −0.021 766 340 75

n DnR
′
n(1) HnR

′
n(1)

1 −1.497 549 110 17 −1.372 765 229 89
2 −1.087 655 912 42 −0.680 054 478 86
3 −0.925 722 120 30 −0.365 061 205 16
4 −0.830 836 907 05 −0.231 099 090 47
5 −0.765 838 376 14 −0.161 444 882 45
6 −0.717 371 131 79 −0.120 240 550 18
7 −0.679 244 328 13 −0.093 647 630 26
8 −0.648 124 422 47 −0.075 379 405 09
9 −0.622 028 147 07 −0.062 227 922 71

10 −0.599 688 075 36 −0.052 408 585 29

The first 10 of them, calculated to 12 significant digits (with the aid of the FindRoot library
program of Mathematica R©)), are listed in table 2. Due to the choice of the minus sign in
equations (41), all the series Si(ζ ) are strictly positive (see table 2). They are also convergent
for any ζ > 0. The larger the value of ζ , the faster the convergence. For ζ → ∞, one has
Si(ζ ) → 0, the leading order term being obviously the first term of the respective series. Thus,
the asymptotic values of q̃w(ζ ;Br), 	T̃b(ζ ;Br) and Nu(ζ ;Br), as being also included in
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table 1, can be obtained easily. In the classical Graetz case one has

qw (∞) = 0, (46a)

Tw − Tb (∞) = 0, (46b)

Nu (∞) = 1
2λ2

1 = 3.656 793 457 75. (46c)

All the asymptotic values are independent of the Brinkman number Br . For ζ → 0, on the
other hand, the series S1 and S2 are divergent, while the other two series converge to the values

S3(0) = 1
4 (47a)

and

S4(0) = 5
24 = 0.208 333 333 33. (47b)

The limiting values (47) have been obtained by evaluating (37) for the entrance temperature
profile (3a) and comparing the result to equation (39).

The subsequent discussion of the results is based on the approximation of the sums Si(ζ ) by
their first 50 terms. In this approximation, the exact values (47) are recovered with the accuracy
S3(0) = 0.249 677 and S4(0) = 0.208 332, respectively. The axial distances considered will
be restricted in the following to the range ζ � ζ0 = 3 × 10−4. With this choice, the terms
of the ‘worst’ series, series (41a), decrease monotonically from

∣∣D1R
′
1(1) e−λ2

1 ζ
∣∣ � 1.5 to∣∣D50R

′
50(1) e−λ2

50ζ
∣∣ � 2.502 × 10−6.

4.2. The local Nusselt number

The main features of the local Nusselt number Nu(ζ ;Br) as a function of the axial coordinate
ζ are illustrated for different (positive and negative) values of the Brinkman number and
for the non-uniform, and uniform entrance temperature in figures 1 and 2. The curves of
figures 1(a) and (b) correspond to positive values of the Brinkman number (‘fluid cooling’
situation, Tw < Te). In this case both q̃w(ζ ;Br) and 	T̃b(ζ ;Br) are negative for all ζ > 0,
so that the Nusselt numbers are positive. The negative q̃w(ζ ;Br) means that heat is always
transferred from the fluid to the wall, at all axial stations ζ > 0. By inspection of figures 1(a)
and (b), two major qualitative differences can be identified.

First of all, figure 1(a) shows that the Nusselt number corresponding to the non-uniform
initial condition becomes independent of the value of the Brinkman number not only for
ζ → ∞ (a property which holds for all initial conditions regardless the Brinkman number), but
also at the downstream station ζ = ζ∗ = 0.002 345 69 where the value of the Nusselt number
coincides with its asymptotic value 9.6. This surprising phenomenon can be explained as
follows. Such an intersection point can only occur if (at least) an axial position ζ = ζ∗ exists
in such a way that the ratio of the corresponding expressions of q̃w(ζ ;Br) and 	T̃b(ζ ;Br),
which according to table 1 is

q̃w (ζ∗;Br)

	T̃b (ζ∗;Br)
= 24

5

1 + 1
4Br

S1 (ζ∗)

1 + 24
5Br

S3 (ζ∗)
, (48)

becomes independent of Br . This happens obviously for that value of ζ∗ which satisfies the
equation

1
4S1(ζ∗) = 24

5 S3(ζ∗). (49)

The (unique) solution of equation (49) is ζ∗ = 0.002 345 69. The corresponding value of
the Nusselt number is 2q̃w (ζ∗;Br) /	T̃b (ζ∗;Br) = 48/5 = 9.6, as mentioned above. For
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(a)

(b)

Figure 2. (a) Plot of the Nusselt number corresponding to the non-uniform entrance temperature
(solid lines) and that corresponding to the uniform entrance temperature (dashed lines) for
Br = −0.5. The curves emphasize a sensitive dependence of the Nusselt number on the
initial conditions. (b) Plot of the Nusselt number corresponding to the non-uniform entrance
temperature (solid lines) and that corresponding to the uniform entrance temperature (dashed
lines) for Br = −1.21. The curves emphasize a sensitive dependence of the Nusselt number on
the initial conditions.

uniform initial condition, this remarkable property of the local Nusselt number does not exist
(see figure 1(b)).

The second major qualitative difference between the two families of curves plotted
in figures 1(a) and (b) concerns the way in which they approach the (same) asymptotic
value Nu(∞;Br) = 9.6. The Nusselt number corresponding to the non-uniform initial
condition (3a) approaches the asymptotic value Nu(∞;Br) = 9.6 always from below
(figure 1(a)). However, in the case of the uniform initial condition, this behaviour holds
according to figure 1(b) only below a certain threshold value Brth of the Brinkman number.
These features can also be recovered analytically from the series expansion of Nu(ζ ;Br) for
large values of ζ . Indeed, to the leading order in ζ , this expansion of Nu(ζ ;Br) reads

Nu(ζ ;Br) =



48
5 − 12

25

(
96
λ2

1
− 5

)
e−λ2

1ζ
(−D1

Br

)
, non-uniform

48
5 − 12

25

(
96
λ2

1
− 5

)
e−λ2

1ζ
(−D1

Br
+ H1

)
, uniform,

(50)

equation (50) shows the mentioned properties clearly. It also allows us to determine the
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threshold value Brth of the Brinkman number above which the Nusselt number corresponding
to the uniform initial condition approaches the asymptotic value 9.6 from above. It is

Brth = D1

H1
= 1.0909. (51)

Figures 1(a) and (b) also show that for small values of ζ , with increasing Br > 0, the difference
between the values of the Nusselt number corresponding to the uniform and non-uniform initial
conditions increases rapidly.

For negative values of the Brinkman number (‘fluid heating’ situation, Tw > Te) the
behaviour of the Nusselt number changes substantially. This is illustrated for Br = −0.5
and Br = −1.21 in figures 2(a) and (b). One sees that for Br < 0, both in the cases of
non-uniform and uniform entrance temperature, zeros and singularities of the Nusselt number
may occur. The zeros of Nu(ζ ;Br) correspond obviously to the zeros of the radial wall heat
flux q̃w(ζ ;Br) and its singularities to the zeros of the bulk temperature difference 	T̃b(ζ ;Br).
It can be shown that, in the case of uniform entrance temperature, 	T̃b(ζ ;Br) possesses a zero
for any negative value of Br , whereas for the non-uniform entrance temperature 	T̃b(ζ ;Br)

may vanish in the range ζ > 0 only for −6/5 � Br < 0. The two values Br = −0.5 and
Br = −1.21 have been chosen such that the latter one is out of the interval −6/5 � Br < 0.
Accordingly, in the case of non-uniform entrance temperature, the Nusselt number distribution
shown in figure 2(b) has no singularity for ζ > 0, in contrast to that shown in figure 2(a).

For ζ → ∞ and Br < 0, all the Nu-curves approach the asymptotic value Nu(∞;Br) =
9.6 always from above. This property can also be recovered analytically by a simple inspection
of equation (50). Therefore, we are faced also for Br < 0 with a substantial dependence of
the Nusselt number on the initial conditions.

The zeros of Nu(ζ ;Br) existing for all negative values of the Brinkman number (i.e. in
the ‘fluid heating’ situation, Tw > Te) have an important physical consequence, since at the
corresponding values (ζ0, Br0) of (ζ, Br), the radial wall heat flux q̃w(ζ ;Br) changes sign in
such a way that

q̃w (ζ ;Br0) =
{
�0 for 0 < ζ � ζ0

�0 for ζ � ζ0.
(52)

Hence, for a given negative value Br = Br0 of the Brinkman number, the fluid is heated by
the wall (i.e. q̃w > 0) only in the axial section 0 < ζ < ζ0 of the duct, while for ζ > ζ0 the
former ‘fluid heating’ process changes into a ‘wall heating’ (i.e. q̃w < 0) process. The reason
is that downstream of the station ζ = ζ0, the heat released by viscous dissipation in the bulk
of the fluid overcomes the heating effect of the wall, and thus it changes the sign of q̃w from
plus to minus.

4.3. The developing temperature field

The dimensionless temperature field developing in the range z > 0 is given by equation (30)
which reduces in the three cases of interest to the following expressions:

�(η, ζ ) =
∞∑

n=1

DnRn(η) e−λ2
n ζ (classical Graetz) (53a)

�(η, ζ ) = Br(1 − η4) +
∞∑

n=1

[Dn − BrHn]Rn(η) e−λ2
n ζ (uniform entrance) (53b)

�(η, ζ ) = Br(1 − η4) +
∞∑

n=1

DnRn(η) e−λ2
n ζ (non-uniform entrance). (53c)
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Figure 3. Plot of the dimensionless temperatures (53b) and (53c) corresponding to viscous
fluid heating with uniform and non-uniform initial conditions, as well as of the dimensionless
temperature (53a) corresponding to the classical Graetz solution, for Br = 3 and ζ = 0.001.

Owing to equations (34), the centreline (η = 0) temperatures at the entrance station (ζ = 0)
can be calculated in all these cases easily. They are

�(0, 0) = 1 (54a)

in the classical Graetz case and for the Graetz–Brinkman problem with uniform entrance
temperature, and

�(0, 0) = 1 + Br (54b)

for the Graetz–Brinkman problem with the non-uniform entrance temperature (3a),
respectively. On the other hand, for ζ → ∞, i.e. far downstream from the entrance station
ζ = 0 where the fluid has lost any memory of its entrance state and where only the effect of
the viscous dissipation is present, one obtains

�(η, ζ ) → 0 (Graetz case) (ζ → ∞) (55a)

�(η, ζ ) → Br(1 − η4) (other two cases) (ζ → ∞). (55b)

In addition, for negligible viscous dissipation, i.e. for Br → 0, as expected, cases (53b)
and (53c) become coincident with (53a) for ζ → ∞. The largest deviations between
the temperature fields (53) corresponding to uniform and non-uniform initial conditions are
obtained, as expected, for large values of Br , at downstream stations close to ζ = 0. This
feature is illustrated in figure 3 where the developing temperature fields (53) have been plotted
as functions of the dimensionless radial coordinate η for Br = 3 and ζ = 0.001. (For the sake
of intuitiveness, functions (53) have been plotted in a symmetric form by extending virtually
the range of variation of η from 0 � η � 1 to −1 � η � 1). Since ζ = 0.001 is close to
the entrance station ζ = 0, equations (54) apply to the case of figure 3 with good accuracy.
Since in the neighbourhood of the entrance station, the developing flow is still dominated
by the initial condition, the two temperature profiles corresponding to the (same) uniform
entrance temperature do occur in figure 3 as being nearly coincident (in spite of the large value
of Br). The overshoots of these curves, near to η = 1, are a typical manifestation of the Gibbs
phenomenon, well known from the theory of Fourier series.
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5. Summary and conclusions

In the present paper, the effect of the traditional uniform entrance condition Ten = const = Te

on the thermally developing flow has been compared with that of a non-uniform entrance
condition Ten = Ten(r) assuming that the viscous dissipation is significant (Graetz–Brinkman
problem). The main results and conclusions of the paper can be summarized as follows.

(1) In the presence of internal heat generation by viscous dissipation, the uniform entrance
condition Ten = Te violates in the upstream section of the duct the thermal energy equation
and thus the first principle of thermodynamics.

(2) The proper entrance condition for an isothermal-to-isothermal Graetz–Brinkman problem
is the fully developed temperature profile Ten(r) = Te + T∗

(
1 − r4

/
r4

0

)
of the Poiseuille

flow, obtained as the solution of energy equation with the isothermal upstream (z � 0)
boundary condition T |r=r0

= Te.
(3) The Nusselt number Nu(ζ ;Br) (as the quantity of main engineering interest of the

thermally developing flow) depends on the choice of the entrance condition sensitively
both for positive and negative values of the Brinkman number Br , especially close to the
entrance station z = 0 (see figure 1). The same holds for the temperature field of the
thermally developing flow (see figure 3).

(4) In contrast to the uniform entrance condition, in the non-uniform case, the Nusselt number
possesses for positive Br (‘fluid cooling’ situation) two remarkable properties. (1) It
becomes independent of the value of the Brinkman number not only for ζ → ∞, but also
at the downstream station ζ = ζ∗ = 0.002 345 69, where the value of Nu coincides with
its asymptotic value, Nu (ζ∗;Br) = Nu(∞;Br) = 9.6. (2) In the non-uniform case,
Nu(ζ ;Br) approaches its asymptotic value 9.6 always from below (see figure 1(a)).

(5) For all negative values of Br (i.e. in the ‘fluid heating’ situations) the radial wall heat
flux q̃w(ζ ;Br) and thus also the Nusselt number, change sign at some axial station
ζ0 = ζ0 (Br). As a consequence, for a given Br < 0, the fluid is heated by the wall
(q̃w > 0) only in the axial section 0 < ζ < ζ0 of the duct, while for ζ > ζ0 the former
‘fluid heating’ process changes into a ‘wall heating’ (q̃w < 0) process. The reason is that
the downstream of the station ζ = ζ0, the heat released by viscous dissipation in the bulk
of the fluid overcomes the heating effect of the wall. This change takes place in the case
of the two entrance conditions at quite different values of ζ0 (Br) (see figures 2).

(6) The present consistent mathematical approach based on the non-uniform entrance
temperature profile Ten(r) = Te + T∗

(
1 − r4

/
r4

0

)
is even simpler than the traditional

one (see equation (27) and table 1).
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